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1. Introduction

Studies of vegetation death and accelerated marsh erosion following Deepwater Horizon have 
shown that both of these injuries can be related to the degree of oiling on marsh vegetation (e.g., 
Hester and Willis, 2015; Silliman et al., 2015). Spatial quantification of these injuries thus relies 
on estimates of how many kilometers of shoreline fell into each of the four stem oiling categories 
on which these injury determinations were based (0-10%, 10-50%, 50-90%, 90-100%). 
Vegetation oiling from the Deepwater Horizon spill was unevenly distributed across Louisiana 
marsh environments, and field observations of stem oiling were collected at discrete points 
(Deepwater Horizon NRDA, 2010). Shoreline exposure categories provide spatially continuous 
coverage, but the SCAT and Rapid Assessment data on which these categories are primarily 
based do not include detailed measurements of stem oiling (e.g., Nixon et al., 2015).

One way of quantifying the length of shoreline falling into each stem oiling category is to assume 
that stem oiling values are evenly distributed in space within shoreline exposure categories, and 
to calculate the length of each stem oiling category based on proportional assignments within the 
shoreline exposure framework. However, this approach does not account for clustering of stem 
oiling data in space. This may be a particular concern for apportionment of stem oiling data that 
were recorded within the “no observed oil” (NOO) category (i.e. false negatives), since there 
were thousands of kilometers of shoreline within this category but nonzero stem oiling 
observations within this category were generally clustered in space.

An alternative is to use a geospatial analysis, which accounts for spatial patterns in stem oiling 
data, as well as spatial variability in the relationship between stem oiling and shoreline exposure. 
This document describes a geospatial analysis that was conducted to estimate the expected 
lengths of mainland herbaceous shoreline in Louisiana falling into each of the four stem oiling 
categories: 0-10%, 10-50%, 50-90%, 90-100%.

2. Data

The analysis was based on four main types of data:

1. Measurement of the percentage of plant stem oiling from the preassessment dataset (911 
“hard” data)"'

2. Indicators of presence/absence of plant stem oiling from the pre-assessment dataset (185 
“soft” data)

3. Oiling exposure category (secondary information) surveyed along the coastline and at 729 
of the 911 hard data locations from Nixon et al. (2015). Oiling exposure is classified into

^“Hard” data are precise measurements of an attribute, which in this case means a percentage of 
stem oiling. “Soft” data are imprecise measurements of an attribute, which in this case means we 
only know whether it was oiled or not; we do not know the percentage of stem oiling (Goovaerts, 
1997)
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one of the four following categories: No oil observed (NOO), Light oiling, Heavier oiling, 
and Heavier persistent oiling.

4. Length of shoreline located within 50x50m squares discretizing the Louisiana coastline.

Figure 1 shows where hard and soft data on percentage of plant stem oiling were collected at 
preassessment (PA) sites. Summary statistics in Table 1 indicate the presence of stem oiling at 
39.6% of hard data sites and only 6% of soft data sites. Similarly, the NOO exposure category is 
more prevalent at soft data sites (81.4%) relative to hard data sites (47.9%); see Table 2. This 
table also highlights the fact that secondary information on oil exposure was not recorded at a 
number of sites: 20% for hard data (182) and 36.2% for soft data (67). In other words, the PA 
survey data extend beyond the boundaries of the shoreline exposure dataset. Oiling exposure 
category surveyed along the coastline, which was discretized using a 50 m spacing grid, is 
mapped in Figure 2. The entire grid includes 118,151 nodes under mainland herbaceous marsh 
and their repartition between four categories of oiling exposure is listed in Table 2 (last column). 
The percentage of observations in the NOO category is much larger in the shoreline exposure 
dataset compared to the hard dataset: 85% of the shoreline exposure data are NOO, compared 
to 47.9% of the PA points, which reflects the preferential sampling of oiled locations during the 
PA survey.

Table 1. Distribution of hard and soft data between the five 
classes of percentage of plant stem oiling. Red numbers in 
parenthesis are percentages of the total number of non­
missing data.

% stem Oiling Hard data (n=911) Soft data (n=185)
0% 551 (60.4) 174 (94.0)
0-10% 59 (6.5)

11 (6.0)10-50% 169(18.6)
50-90% 80 (8.8)
> 90% 52 (5.7)

Table 2. Distribution of hard and soft data between the four categories of oiling exposure. The 
last column reports the number of shoreline nodes within each oiling exposure category. Red 
numbers in parenthesis are percentages of the total number of non-missing data.

Oiling exposure category Hard data (n=911) Soft data (n=185) Shoreline (n=118,151)
No Oil Observed (NOO) 349 (47.9) 96 (81.4) 100,418 (85.0)
Light Oiling 172 (23.6) 17 (14.4) 12,234 (10.3)
Heavier Oiling 153 (21.0) 5 (4.2) 4,096 (3.5)
Heavier persistent Oil, 55 (7.5) 0 1,403 (1.2)
Missing 182 67
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3. Methods

The flowchart of Figure 3 illustrates the main steps of the analysis that was validated using a 
leave-one-out approach^ at the 729 locations where percentage of stem oiling and oiling 
exposure categories were both recorded. Following this validation, this process was applied to 
the entire coastline. The analysis was conducted using the following software: 1) SpaceStat 4.0 
(Jacquez et al., 2014) for geographically-weighted regression and variogram modeling, 2) SAS 
9.3 (SAS Institute Inc., 2011) for aspatial logistic regression and the creation of ROC curves, 3) 
SGeMS (Remy et al., 2008) and Gslib (Deutch and Journal, 1998) for cross-variogram modeling 
and indicator cokriging, and 4) code written by Dr. Goovaerts for data manipulation and 
computation of expected lengths of shoreline in different categories of plant stem oiling.

3.1. Indicator coding of plant stem oiling data

The analysis started with the coding of each percentage of stem oiling data into a vector of 
indicators of exceedance of four thresholds Zc = 0, 10, 50, and 90%. Let Ua= (x„,ya) be a vector of 
UTM coordinates representing the geographical location of a stem oiling data, denoted z(Ua) for 
hard data and s(Ua) for soft data. The set of four indicators at any hard data location Ua was then 
constructed as:

=  c =  l , - , 4  (1)
'-0 otherwise

For example, the indicator coding of a stem oiling data z(Ua)=0.356 will be: i(Ua;zi)=1, i(u<x;z2)=1, 
i(Ua;z3)=0 , and i(Ua;z4)=0 since only the first two thresholds of 0 and 10% are exceeded. At 
locations of soft data (i.e. presence/absence of oil), an indicator can only be constructed for the 
first threshold = 0% since the exact percentage of plant stem oiling is unknown:

i(u„;zi) = h  1 (2)
to otherwise

3.2. Predicting probabilitv of plant stem oiling from oiling exposure categorv

Because the percentage of stem oiling was recorded only at 911 discrete locations, the 
extrapolation of this sole information to the entire shoreline length is challenging. It is thus 
beneficial to incorporate the secondary information provided by oiling exposure category since it 
is available on a continuous basis over large sections of the shoreline. Logistic regression was 
used to create a predictive model of the likelihood that a threshold Zc = 0, 10, 50, and 90% of 
stem oiling is exceeded at any location u (i.e. sampled location or coastline grid node) on the 
basis of the oiling exposure category surveyed at that location. In other words, the dependent

 ̂A leave-one-out approach means tha t each observation in the dataset was removed at a tim e and its value was estimated  
from the  remaining observations (Goovaerts, 1997).
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variable is the indicator defined in Eq. (1) while the covariate is the oiling exposure category. 
Logistic regression was conducted in two different settings.

First, an aspatial logistic regression was performed whereby the predictive model is created 
using the entire data set (i.e. 729 locations where both hard data and oiling exposure category 
were recorded) and without accounting for the geographical location of the data. The underlying 
assumption is that the relationship between oiling exposure category and percentage of plant 
stem oiling does not change along the Louisiana coastline (assumption of stationarity). This 
strong assumption was relaxed in a second analysis where logistic regression is conducted at 
each location u using only neighboring data (e.g. N  closest data or data falling within a window of 
size S centered on u). Because each observation is weighted according to its proximity to the 
center of the window, this type of local regression is known as geographically-weighted 
regression^ (Fotheringham et al., 2002; Goovaerts et al., 2015). The implementation of 
geographically-weighted regression (GWR) requires the selection of two main parameters: 1) the 
type of weight function, and 2 ) the type of search strategy for the local regression (i.e. size of the 
search window S or number of neighbors N).

The weight Wa assigned to each observation z(Ua) when conducting GWR at u was computed 
using the following bisquare weight function:

^  J[1 -  ( d a / a y V  i f  da < a 3̂^
0 otherwise

where da is the Euclidean distance between Uaand u, and a is the bandwidth or maximum 
distance for non-zero weights. The bandwidth was here spatially variable and set to the distance 
between u and the most remote observation used in GWR at that location, which allows taking 
into account the highly variable sampling density along the coastline. Such an “adaptive” weight 
function was preferred to the use of a fixed bandwidth because the latter tends to generate more 
extreme coefficients in GWR maps, which directly affects the visual pattern and may contribute to 
biased interpretation (Cho eta l., 2009).

The window size S or number of neighbors N  for GWR had to be large enough to include, for 
each location u, all four levels of oiling exposure category so that logistic regression could be 
performed. This condition could not be satisfied without using a very large search window, which 
decreased the efficiency of GWR. To reduce the size of the search window while ensuring the 
convergence of logistic regression, the “Oiling exposure” variable was incorporated as a 
continuous instead of an ordinal"^ variable in the predictive model. In other words, the four 
categories of increasing oiling exposure listed in Table 2 (NOO, lighter oiling, heavier oiling and 
heavier persistent oiling) were coded numerically as: 1, 2, 3, and 4. The appropriateness of this

 ̂Although more sophisticated methods (e.g. Gelfand et al., 2003) exist, their developm ent w ithin a Bayesian fram ew ork limits 
the size o f the datasets that can be manipulated in practice. For example, the tw o case-studies analyzed in Gelfand et al. 
(2003) include 237 and 120 observations, which is three  orders of magnitude smaller than the data analyzed in the present 
study (118,151 grid nodes).
 ̂An ordinal variable is similar to  a categorical variable. The difference between the two is that there is a clear ordering of the  

categories; e.g. the "lighter oiling" category clearly falls between the "NOO" and "Heavier oiling" categories.
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approach was tested using the following procedure described in Pasta (2009): the ordinal 
variable is incorporated as both a categorical and a continuous variable in the regression model 
and if the categorical variable is not statistically significant, treating the ordinal variable as 
continuous is acceptable. In the present study, the categorical version of the “Oiling exposure” 
variable was never significant, with p-values ranging from 0.099 (z^, Z2) to 0.724 (Z4) depending 
on the stem oiling threshold Zc used, which validated its use for GWR. Then, seven different 
search strategies were investigated to select observations for GWR: using all data within a radius 
of 3 or 5 km from location u, or using the closest 50, 100, 150, 250, or 350 observations. The 
choice of a search strategy was guided by the results of a validation analysis and Receiver 
Operating Characteristic (ROC) curves described in Section 3.3 below.

The trade-off cost for the local modeling of relationships between oiling exposure category and 
percentage of plant stem oiling by geographically-weighted regression is the greater uncertainty 
attached to GWR probability estimates relative to aspatial regression. This larger uncertainty 
translates into wider 95% confidence intervals (Cl) and probability estimates that might not differ 
significantly from 0 or 1. For each of the four thresholds Zc, probabilities estimated by aspatial 
and GWR logistic regression were combined according to the following procedure:

a) If the GWR Cl is wide enough to include a very low probability threshold T  and its 
counterpart (1-7), then the GWR estimate was considered unreliable and replaced by the 
aspatial regression estimate.

b) If the GWR Cl includes a very low probability threshold T but not its counterpart (1 -T), then 
the GWR estimate was considered to be not significantly different from zero and replaced 
by 0 .

c) If the GWR Cl includes a very high probability threshold (1-7) but not its counterpart T, 
then the GWR estimate was considered to be not significantly different from one and 
replaced by 1.

d) If none of conditions (a)-(c) was met, the GWR probability estimate was used.

Seven different very small values (0, 0.001, 0.005, 0.0075, 0.01, 0.015, and 0.03) were 
considered for the probability threshold T  and as for the search strategy the final choice of T  was 
guided by the results of a validation analysis and ROC curves described in Section 3.3 below.

3.3. Validation analysis using Receiver Operating Characteristic (ROC) curve

The accuracy of the predictive model described in Section 3.2 was assessed by comparing at 
729 sampled locations Uathe estimated probability of exceeding a threshold Zc, p*(Ua; Zc), with 
the ground truth i(Ua; Zc) defined in Eq. (1). The comparison was based on ROC curves (Swets, 
1988) which plot the probability of false positive versus the probability of detection. For each 
threshold the ROC curve was created by the following procedure:
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• Calculate the probability p*(Ua;zc) that a specific threshold Zc is exceeded at each 
location Ua.

• Classify as oiled (i.e. percentage of plant stem oiling above the threshold Zc) the 
locations where this probability exceeds a threshold P  ranging from 0 to 1.

• Compute the probability of detection as the proportion of “true” oiled location data (i.e. 
percentage of stem oiling larger than the threshold Zc) where p*(Uai Zc) > P. The 
probability of false positive is calculated as the proportion of locations that are wrongly 
declared as having elevated percentage of plant stem oiling.

The most efficient algorithm is the one that allows the detection of a larger fraction of oiled 
locations at the expense of fewer false positives; that is the ROC curve should be as close as 
possible to the vertical axis; see example in Figure 4. A quantitative measure of the accuracy of 
the prediction is the relative area under the ROC curve (ADC statistic), which ranges from 0 to 1.

3.4. Updatina prior probabilities of plant stem oiling using indicator cokriaing

The predictive model described in Section 3.2 does not make full use of all the information 
available in that: 1) out of a total of 1,096 stem oiling data only 729 data that also included oiling 
exposure category were used in the regression, and 2 ) the geographical coordinates of the data 
are ignored in aspatial regression and indirectly used in GWR since only the separation distance 
from the center of the search window is accounted for, thereby ignoring any spatial clustering of 
the data which could bias results. Indicator cokriging (CK) incorporates this missing information 
into the prediction of the probability of exceeding a stem oiling threshold Zc using the following 
estimator:

Pck(u;Zc) =  2o X  p*(w;Zc) X  i(M«;Zc) with JLq +  =  1 (4)

where the probability estimated using logistic regression, p *(u ;Z c ), is combined with indicators of 
exceedance at n(u) neighboring sampled locations, i(Ua,; Zc), using a set of weights JL which are 
the solution of a system of linear equations, known as a cokriging system (Goovaerts, 1997). The 
weights take into account the proximity of the data to the location u (e.g. closest data receive 
more weight), the data configuration (e.g. spatially clustered data receive less weight since they 
provide redundant information), as well as the spatial pattern of the data. Following Deutsch and 
Journal (1998), Equation (4) can also be interpreted as the statistical updating of the probability 
derived from the sole oiling exposure category (prior probability p*(u;zc)) using stem oiling data, 
resulting in a “posterior” probability of exceeding the threshold Zc,

Similar to geographically-weighted regression, a key issue in cokriging is the search strategy to 
select n(u) neighboring plant stem oiling data. The number n(u) was arbitrarily set to a maximum 
of 8 to avoid smoothing the results by averaging the influence of too many observations. 
Following a discussion with NOAA scientists and interpretation of indicator variograms, the 
search window was restricted to 1 km for the two highest thresholds (50 and 90%) while it
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extended to 2 km for the thresholds of 0 and 10% of stem oiling. In other words, the pollution 
resulting in the highest percentages of stem oiling was viewed as a more local phenomenon than 
the lowest pollution levels (0 to 10% plant stem oiling). Whenever the search window does not 
include any stem oiling data, no updating was conducted and the regression estimate was used 
as final estimate, i.e. prior and posterior probabilities are the same.

For both geographically-weighted regression and cokriging, the selection of neighbors and 
computation of spatial weight functions were based on Euclidean distances, rather than over­
water distances. To explore the sensitivity of the results to that approximation, the set of 729 
locations where both the percentage of stem oiling and oiling exposure categories were recorded 
underwent a change of coordinates following the procedure described by Loland and Host 
(2003). This approach, which is based on a multidimensional scaling (MDS) of the 729x729 
matrix of over-water distances between each pair of observations, creates a new data 
configuration (Figure 5) where Euclidean distances between observations approximate the 
original over-water distances. A geographically-weighted regression of data using the 50 closest 
neighbors before and after projection by MDS yields probabilities p*(Ua;zc) that were strongly 
correlated: r=0.977 to 0.989 depending on the threshold Zc. Based on this result and the similarity 
of variograms computed on both datasets, the additional complexity associated with projecting 
the entire coastline into a new system of coordinates was deemed not justified.

3.5. Computing expected length of shoreline in each categorv of plant stem oiling

The expected length of shoreline where the percentage of plant stem oiling exceeds the 
threshold was computed from the posterior probabilities Pck(u ;Zc) as:

^(^c) ^  ^ ^ P r o x i ^ J ’ ^ c }  (^)

where:

N=118,151 is the number of grid nodes discretizing the Louisiana coastline under 
mainland herbaceous marsh,

• Ij is the length of shoreline located within the 50x50 m square centered on node Uj, and

• hrox(uj',Zc) =1 if the node u j is within 1 km (thresholds 50 and 90%) or 2 km (thresholds 0 
and 10%) of a pre-assessment site, and zero otherwise.

In other words, the expected length of shoreline with plant stem oiling above was computed as 
the sum of the product of the shoreline lengths within each 50x50m square and the probability 
that oiling is above Zc within that square. Only locations in the vicinity of a PA site were included 
in the computation to avoid extrapolating results to sparsely sampled segments of shoreline. The 
distances of 1 and 2 km correspond to the size of the cokriging search windows described in 
Section 3.4.
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4. Results

Table 3 summarizes the results for the aspatial logistic regression between the oiling exposure 
categories (4 levels) and the indicator of exceedance of one of the four thresholds Zc of 
percentage of plant stem oiling. Incorporating the exposure categories as a categorical vs 
continuous variable has a moderate impact on the estimated probabilities of exceedance, yet the 
AUC statistic indicates that the predictive power of the two types of model is identical. This result 
justifies the use of a continuous exposure variable in geographically-weighted regression.

As described in Section 3.2, a sensitivity analysis was conducted to support the choice of a 
search strategy for GWR and the use of a probability threshold T  fo r merging aspatial and 
geographically-weighted regression estimates. This sensitivity analysis was first performed for z^ 
= 90% because it is the most critical threshold for quantification of erosion injury from plant stem 
oiling (e.g., Silliman et al., 2015). Table 4 lists the values of the AUC statistic for all 49 
combinations of seven search strategies (using all data within a radius of 3 or 5 km from location 
u, or using the closest 50, 100, 150, 250, or 350 observations) and seven probability thresholds T 
(0, 0.001, 0.005, 0.0075, 0.01, 0.015, and 0.03). The threshold 7=0 means that GWR estimates 
are never deemed unreliable; hence aspatial regression estimates are never substituted for GWR 
estimates. As expected, the predictive power of the model decreases as the size of the search 
window increases and data farther away are used. The AUC statistic exceeds 0.9 only when 
using the 50 closest observations and the maximum is found for 7=0.0075, which was therefore 
used fo r merging results. Note that the merged probabilities have a greater accuracy (AUC = 
0.913) than the result obtained by aspatial regression alone (AUC = 0.769) or GWR alone (AUC 
= 896). A sensitivity analysis was also conducted for the three other thresholds z^ = 0, 10, and 
50% but the search strategy was fixed and set to the 50 nearest neighbors. Table 5 indicates that 
a threshold 7=0.0075 is optimum for all four thresholds and results in a greater accuracy (i.e. 
higher AUC statistic) relative to aspatial regression (Table 3, bottom line) and GWR (Table 4, 
case 7=0).

Table 3. Probability of exceeding a percentage of plant stem oiling threshold Zc estimated using 
aspatial logistic regression with oiling exposure category as a categorical (black number) or 
continuous (red number) covariate. The predictive power of each model is quantified using the 
Area Under the ROC Curve (AUC) statistic. The best models are those with an AUC statistic 
closest to 1.

Estimated probability of exceeding a stem oiling threshold Zc
Oiling exposure category Zo=0% Zo=10% Zo=50% Zo=90%
No Oil Observed (NOO) 0.215 (0.224) 0.160 (0.172) 0.052 (0.060) 0.017 (0.020)
Light Oiling 0.535 (0.485) 0.459 (0.404) 0.192 (0.150) 0.064 (0.053)
Heavier Oiling 0.706 (0.754) 0.688 (0.754) 0.294 (0.330) 0.124 (0.131)
Heavier persistent Oiling 0.945 (0.909) 0.878 (0.909) 0.600 (0.577) 0.290 (0.290)

AUC statistic 0.766 (0.766) 0.774 (0.774) 0.765 (0.765) 0.769 (0.769)
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Table 4. Results of sensitivity analysis of how the search strategy and value of threshold T 
for merging GWR and aspatial regression estimates impact the predictive power of the 
model as measured using the Area Under the Curve (AUC) statistic. Red highlighted value 
Is the final choice used in the modeling, using the 50 nearest data and a probability 
threshold 1=0.0075.

Probability thres hold 7
Search strategy T=0.03 T=0.015 T=0.01 T=0.0075 7=0.005 7=0.001 7=0
Radius = 3 km 0.799 0.829 0.835 0.845 0.842 0.837 0.832
Radius = 5 km 0.805 0.852 0.856 0.855 0.862 0.870 0.866
50 nearest data 0.791 0.849 0.889 0.913 0.912 0.911 0.896
100 nearest data 0.796 0.838 0.838 0.856 0.873 0.880 0.867
150 nearest data 0.803 0.831 0.842 0.846 0.857 0.863 0.863
250 nearest data 0.808 0.825 0.831 0.830 0.845 0.847 0.847
350 nearest data 0.818 0.819 0.831 0.829 0.841 0.841 0.841

Table 5. Results of sensitivity analysis of how the value of threshold T for merging GWR and 
aspatial regression estimates impact the predictive power of the model for different stem oiling 
thresholds z .̂ The Area Under the Curve (AUC) statistic is best if close to 1.

Probability threshold 7
Stem Oiling threshold 7=0.03 1=0.015 1=0.01 7=0.0075 7=0.005 7=0.001 7=0
Zc=0% 0.874 0.876 0.876 0.876 0.876 0.876 0.866
Zc=10% 0.874 0.877 0.877 0.877 0.877 0.877 0.868
Zc=50% 0.846 0.860 0.872 0.872 0.874 0.874 0.857
Zo=90% 0.791 0.849 0.889 0.913 0.912 0.911 0.896

Following the sensitivity analysis, aspatial regression and GWR were conducted at 118,151 
nodes discretizing the Louisiana coastline under mainland herbaceous marsh. The two sets of 
probability estimates were then combined, for each stem oiling threshold, using the procedure 
described in Section 3.2 with 7=0.0075. The resulting probabilities are referred to as “prior” 
probabilities as they are based solely on the oiling exposure category recorded at each grid 
node. Cokriging was applied to update these “prior” probabilities using the additional information 
provided by indicator coding of hard and soft data (Eqs. 1 and 2). For each threshold, direct and 
cross indicator variograms were computed and modeled using a combination of one exponential 
variogram model with range of 600 m and another exponential model with a range of 15 km for
thresholds = 0 and 10 %, 10 km for threshold = 50%, and 5 km for threshold z^ = 90%.

10
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The posterior probabilities estim ated by cokriging at each grid node were m ultip lied by the 
corresponding length of shoreline according to Eq. (5) to com pute the expected lengths of 
shoreline where the percentage of plant stem oiling exceeds each of the fou r thresholds = 0, 
10, 50 and 90%. Table 6 lists the lengths of shoreline falling into classes 0-10%, 10-50%, and 50- 
90%, which were obtained as the d ifference L(Zc+i)-L(Zc).

Table 6. Expected length of Louisiana shoreline 
under mainland herbaceous marsh falling into 
different classes of percentage of plant stem 
oiling (see Equation 5).

% plant stem Oiling Expected length (km)
0-10% 109
10-50% 225
50-90% 628
> 90% 199
Total 1,161
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Figure 1. Geographical location of hard (■) and soft (A )  data on percentage of plant stem oiling 
that were used in the geospatial analysis. Red color denotes locations where oiling was observed 
while blue symbols correspond to zero percentage of plant stem oiling.
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Figure 2. Oiling exposure category recorded at 729 pre-assessment sites, as well as at 118,151 
nodes discretizing the Louisiana shoreline under mainland herbaceous marsh. Data frame as in 
Figure 1.
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Regression against Oiling Exposure category

Aspatial Logistic 
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Geographically-weighted 
logistic regression (GWR)
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Updating using 
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I

Posterior probability o f stem 
oiling along entire shoreline

Hard & Soft data on % of 
vegetation oiling (n=l,096)

 > Expected length of shoreline in 4 
categories of % plant stem oiling

Figure 3. Flowchart describing the different steps of the geospatial analysis for the computation 
of expected length of shoreline falling into specific classes of percentage of plant stem oiling.
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Figure 4. Examples of ROC curves which plot the prcbabiilty c f false positive versus the 
probability of detection. The most efficient algorithm is the one that allows the detection of a 
larger fraction of oiled sites at the expense of fewer false positives; that is the ROC curve should 
be as close as possible to the vertical axis (i.e. blue model). A quantitative measure of the 
classification accuracy is the relative area under the ROC curve (AUC), which represents the 
average frequency of detection.
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Figure 5. Geometric projection of the original set of 729 pre-assessment locations with known 
oiling exposure category to create a new data configuration (bottom map) where the Euclidean 
distance between observations approximates the over-water distance in the original configuration 
(top map). The approach is based on multidimensional scaling (MDS) and the very small 
badness-of-fit criterion (0.01) indicates a very good reproduction of water-path distance by 
Euclidian distance after projection.
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